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Machine Learning and Statistics: Similarities/differences

• Machine learning as an extension of traditional statistics

• Machine learning and statistics address a common set of problems:

○ Classification/Regression (supervised learning)
○ Clustering/Density estimation (unsupervised learning)
○ Dimensionality reduction (unsupervised learning)
○ Time series analysis

• Machine learning also analyzes general learning problems, some of 
which have analogues in neuroscience/psychology

○ Semi-supervised learning
○ Reinforcement learning
○ Transfer-/meta-learning
○ …
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Machine Learning and Statistics: New Issues

• Current machine learning methods characterized by                    
several properties:

○Complex function classes

○Optimization landscapes with many local optima

○Cross validation and generalization testing on hold-out data 
required

○ Interpretability methods required to analyze models

○Black-box nature introduces issues of fairness
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Figure	from	Arora,	2018



Machine Learning and Statistics: Potential of recent ML methods

• Factors motivating the use of recent machine-learning methods in 
numerous areas:

○Deep-learning methods currently provide best (or comparable) 
predictive accuracy on a wide-range of problems

○ Examples in Genomics/neuroscience:
• Epigenome annotation
• Variant effect prediction
• Protein folding prediction
• Ancestry reconstruction
• Polygenic risk scores
• …
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Deepmind’s
AlphaFold:

From	Senior	et	al.,	2018



Machine Learning and Statistics: Potential of recent ML methods

• Factors motivating the use of recent machine-learning methods in 
numerous areas:

○Simpler models are known/suspected to be inadequate for many 
problems in genomics and neuroscience

○ Examples

• In genetics: Problem of missing heritability may point towards 
substantial epistasis affecting many traits (particularly 
psychiatric, e.g. ASD, SCZ; Zuk et al., 2014)

• In neuroscience: Neuronal dynamics are highly non-linear, and 
hand-tuned models require extensive coarse-graining for 
tractability (Mejias et al., 2018)
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Machine Learning and Statistics: Potential of recent ML methods

• Factors motivating the use of recent machine-learning methods in 
numerous areas:

○ Interpretability methods are being developed to probe models for 
many problems of interest

○ Examples

• In genomics: Deep-LIFT for variant prioritization (Shrikumar et 
al., 2017)

• In neuroscience: Gradient-based methods for identifying causally 
relevant voxels in fMRI (Dezfouli et al., 2018)

• In psychiatric genomics: Pathway/module-based annotation of 
hidden nodes in polygenic models (Wang et al., 2018)
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Machine Learning and Statistics: Potential of recent ML methods

• Factors motivating the use of recent machine-learning methods in 
numerous areas:

○ Theoretical analysis of deep-learning has progressed substantially, 
clarifying its statistical properties (Arora, 2018)

○ Examples

• Compressibility analysis: Networks learned on                           
real data are highly stable and compressible

• Information Bottleneck principle:                                               
DL automatically identifies relevant features
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Recent Machine Learning Approaches and Neuroscience:
Bayesian and Causal Networks

• Comparison of methods
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Method Flexible	function	
forms

Global	
optimization

Compact
models

Interpretability

Linear/logistic	
regression

X X X

Bayesian/causal
networks

(X) X X X

Random	Forests X X

SVMs X X

Deep	Neural	
Networks

X X (X)



Recent Machine Learning Approaches and Neuroscience:
Bayesian and Causal Networks

• Bayesian and Causal Networks
○Any probability distribution can be factored: 𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 𝑝 𝑦 𝑥 𝑝(𝑧|𝑥, 𝑦)
○Bayesian networks model independence assumptions via a directed 
acyclic graph (DAG):

○Causal networks carry additional semantics

• Applications in Genomics: 
○Genome annotation (ChromHMM, Ernst and Kellis, 2010)
○Causal modeling of protein signaling networks (Sachs et al., 2005)
○QTL modeling with hidden factors (PEER, Stegle et al., 2012)
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𝑝 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 𝑝 𝑦 𝑥 𝑝(𝑧|𝑥)
𝑥

𝑦 𝑧
[e.g.	gene	expression	 levels]

𝑝 𝑥,𝑦, 𝑧 = 𝑝 𝑥 𝑝 𝑦 𝑥 𝑝(𝑧|𝑦) 𝑝*+(,-,.) 𝑥, 𝑦, 𝑧 = 𝑝 𝑥 𝛿(𝑦 = 𝑦0)𝑝(𝑧|𝑦0)



Recent Machine Learning Approaches and Neuroscience:
Random Forests and Support Vector Machines (SVMs)

• Random Forests and SVMs are flexible ML classification and 
regression models

• Both are universal approximators (can model any function)
• Random Forests:

○ Recursively split training data based on an error function such as the 
Gini-index or entropy

11 WCPG, Education Day, Machine Learning tutorial. September 26th, 2019

• Applications in Genomics/Neuroscience:
○RFs: Brain cell-type discovery and prediction (Lake et al., 2014; 
Tasic et al., 2018)

Left:	A	2-dimensional	
parameter	space	is	partitioned	
into	5	subspaces
Right:	Tree	representation	of	
the	resultant	partition



Recent Machine Learning Approaches and Neuroscience:
Random Forests and Support Vector Machines (SVMs)

• Support Vector Machines:
○ Learn a linear classifier in a high-dimensional feature space
○ Kernel can be chosen based on problem; highly flexible
○ Global optimum can be found (convex), but model may be non-compact
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C.	Bishop,	2006

SVM,	with	RBF	kernel:

• Applications in Genomics/Neuroscience:
○SVMs: Binding site motif discovery (gkmSVM, Ghandi et al., 2014)
○SVMs: Neuronal population code analysis (Schuck and Niv, 2018)

Input	space: Feature	space:



Recent Machine Learning Approaches and Neuroscience:
Deep-Learning

• Deep-Learning provides an alternative approach to supervised and 
unsupervised learning

• Uses highly non-linear models which can be efficiently optimized using 
back-propagation and stochastic gradient descent
○NB optimization is non-global

• Hidden nodes discover features from training data (require interpreting)
• Function form: 𝑦 = 𝐖2𝜎(𝐖245𝜎 …𝐖0𝐱 )
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• Applications in Genomics/Neuroscience:
○ In silico prediction of variant effects on TF 
binding motifs (DeepSEA, Zhou et al., 2015)

○ Epigenome annotation (Avacado, Schreiber 
et al., 2018)

○Non-linear PRSs (Tran et al., 2018)
○ Joint language/fMRI model (Jain et al., 2018)



Integrative Analysis – PsychENCODE case study: Multilevel modeling 

• For any trait, the effects of genetic variation arise through perturbations 
of processes at cellular and sub-cellular levels, which can be probed 
through genomics data.
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Genetics Genomics Clinical
Shendure et	al.	2017,	Nat.	Rev.	550,	P.	345-353 Orphanides	and	Reinberg 2002,	 Cell	108,	 P.	439-451 GTEx Consortium	 2017,	Nature	550,	P.	204-213



Integrative Analysis – PsychENCODE case study: Multilevel modeling 

• For psychiatric and brain-related traits, additional layers of complexity 
are relevant.
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From:	Parikshak et	al.,	2015
Holmes	et	al.,	2018



Integrative Analysis – PsychENCODE case study: Multilevel modeling 

• For PsychENCODE integrative analysis (Wang et al., 2018), we 
introduced a deep-learning based predictive model for psychiatric 
conditions (Schizophrenia, Bipolar, Autism)
○ Learn to predict genomics variables from genetic variation
○Model unobserved intermediate layers as latent factors
○ Predict psychiatric disorders from genetics by imputing genomics and 
latent factors

•Motivating assumptions: 
○ Additive polygenic risk scores achieve low predictive power because of 
failure to model epistasis

○ Epistatic interactions can be captured through deep-learning by using 
genomics to embed known structure into the model

• Data:
○ 1039 control, 558 SCZ, 217 BPD and 44 ASD subjects
○ Post-mortem Prefrontal Cortex samples from all subjects
○ WGS genotype data from all subjects
○ RNA-seq data, all subjects
○ ChIP-seq (h3k27ac), and Hi-C data from a subset of subjects
○ Also integrate data from GTEx, Epigenetics Roadmap & CommonMind
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Integrative Analysis – PsychENCODE case study: 
Larger eQTL sets than previous brain studies
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PsychENCODE coding eGenes
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GWAS	enrichment

• Also,	calculate	~8K	chromatin	QTLs	(cQTLs),	1.6K	cell	fraction	QTLs	
(fQTLS)	and	others
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Integrative Analysis – PsychENCODE case study: 
Gene regulatory network inference

Imputed gene regulatory network linking 
TFs, enhancers and genes plus QTLs

e.g., subnetworks targeting single cell marker genes
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Hi-C
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Integrative Analysis – PsychENCODE case study: 
Weighted Gene Co-expression Network Analysis (WGCNA)
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• WGCNA algorithm for finding network modules (Zhang et al., ‘05):

• We apply WGCNA to find 5024 modules
• Other PEC analyses find modules which change over development (Li et 
al., 2018), and with cross-disorder associations (Gandal et al., 2018)

1. Start	with	a	weighted	network	(correlation	in	expression	values)
2. Compute	the	`Topological	overlap’	between	all	pairs	of	genes	

(proportional	to	#	neighbors	shared)
3. Build	dendrogram using	mean	distance	agglomerative	clustering
4. Cut	tree	to	produce	final	modules	(Dynamic	Tree	Cut)



Integrative Analysis – PsychENCODE case study: 
Conditional Boltzmann machine models
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𝑝 𝐲|𝐳 ∝ exp −𝐸 𝐲|𝐳

𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝑝 𝐱, 𝐡 ∝ exp −𝐸 𝐱, 𝐡

LR
:

[RBM]:

cRBM/cDBM:

cRBM:		V.	Mnih,	H.	Larochelle,	G.	E.	Hinton,	Conditional	Restricted	Boltzmann	Machines	for	Structured	Output	Prediction.	UAI,	2012.
DBM:			R.	Salakhutdinov,	G.	Hinton,	Deep	Boltzmann	Machines.	AISTATS,	2009.	

𝐳

𝐱

𝐡

𝐲
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Integrative Analysis – PsychENCODE case study: 
Deep Structured Phenotype Network (DSPN) 
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𝑝 𝐱, 𝐲, 𝐡|𝐳 ∝ exp −𝐸 𝐱, 𝐲, 𝐡|𝐳

𝐸 𝐱, 𝐲, 𝐡|𝐳
= −𝐳A𝐖𝟏𝐱−𝐱A 𝐖𝟐𝐱 − 𝐱A𝐖𝟑𝐡
− 𝐡A𝐖𝟒𝐡−𝐡A𝐖𝟓𝐲−𝑩𝒊𝒂𝒔

GRN and QTL 
linkages 
embedded in 
DSPN
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Energy	model:

(HOGs)
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Integrative Analysis – PsychENCODE case study: 
DSPN improves disorder prediction over baseline PRS

Accuracy	=	chance	to	correctly	predict	disease/health
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Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar	Disorder	 56.7% 63.3% 71.1% 67.2% 76.7%

ASD 50.0% 51.7% 67.2% 62.5% 68.3%

X	6.0
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Integrative Analysis – PsychENCODE case study: 
Latent factors help prediction in DSPN
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Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar	Disorder	 56.7% 63.3% 71.1% 67.2% 76.7%

ASD 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy	=	chance	to	correctly	predict	disease/health
X	2.5
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Integrative Analysis – PsychENCODE case study: 
Incorporating prior structure helps prediction
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Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar	Disorder	 56.7% 63.3% 71.1% 67.2% 76.7%

ASD 50.0% 51.7% 67.2% 62.5% 68.3%

Accuracy	=	chance	to	correctly	predict	disease/health
X	3.1
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Method LR-genotype LR-transcriptome cRBM DSPN-
imputation

DSPN-full

Schizophrenia 0.5% 4.8% 31.0% 1.8% 32.8%
Bipolar	Disorder	 2.5% 6.3% 22.6% 10.7% 37.4%

ASD 0.0% 1.8% 10.8% 3.2% 11.3%

Integrative Analysis – PsychENCODE case study: 
Converting predictive performance to liability scale
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Integrative Analysis – PsychENCODE case study: 
Multilevel network interpretation 
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Rank	projection	tree DSPN	modules	(MODs)	and	
higher-order	groupings	(HOGs)

J.	Warrell,	H.	Mohsen,	and	M.	Gerstein.	Rank	projection	trees	for	Multilevel	Neural	Network	Interpretation.	NeurIPSML4H	workshop,	2018		

WCPG, Education Day, Machine Learning tutorial. September 26th, 2019



Integrative Analysis – PsychENCODE case study: 
Cross-disorder ranking of functional terms
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KEGG/GO	terms
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Integrative Analysis – PsychENCODE case study: 
Linkage of eQTLs, cQTLs and enhancers to prioritized modules (SCZ)

28 WCPG, Education Day, Machine Learning tutorial. September 26th, 2019



Summary

29 WCPG, Education Day, Machine Learning tutorial. September 26th, 2019

• Current methods in machine learning lie on a spectrum with 
traditional statistics

• Recent methods such as Deep-Learning are highly flexible, and give 
high performance across multiple tasks

• However, require novel methods for model interpretation: many 
available and are being developed

• Many successes in genomics and neuroscience: tantalizing results 
may point to beginnings of a shared understanding of the brain and 
principles underlying AI
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Thanks for your attention!
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