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Machine Learning and Statistics: Similarities/differences

« Machine learning as an extension of traditional statistics

* Machine learning and statistics address a common set of problems:

- Classification/Regression (supervised learning)

» Clustering/Density estimation (unsupervised learning)
- Dimensionality reduction (unsupervised learning)

- Time series analysis

« Machine learning also analyzes general learning problems, some of
which have analogues in neuroscience/psychology

- Semi-supervised learning
- Reinforcement learning
- Transfer-/meta-learning
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Machine Learning and Statistics: New Issues

* Current machine learning methods characterized by
several properties: B i

|
|
|
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- Complex function classes

o Optimization landscapes with many local optima

- Cross validation and generalization testing on hold-out data
required

o Interpretability methods required to analyze models

- Black-box nature introduces issues of fairness

Figure from Arora, 2018
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Machine Learning and Statistics: Potential of recent ML methods

« Factors motivating the use of recent machine-learning methods in

NUMErous areas.

- Deep-learning methods currently provide best (or comparable)
predictive accuracy on a wide-range of problems

- Examples in Genomics/neuroscience:

« Epigenome annotation
 Variant effect prediction
 Protein folding prediction
* Ancestry reconstruction

* Polygenic risk scores

Protein Sequence
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Machine Learning and Statistics: Potential of recent ML methods

« Factors motivating the use of recent machine-learning methods in
numerous areas:

- Simpler models are known/suspected to be inadequate for many
problems in genomics and neuroscience

- Examples

* In genetics: Problem of missing heritability may point towards
substantial epistasis affecting many traits (particularly
psychiatric, e.g. ASD, SCZ; Zuk et al., 2014)

* In neuroscience: Neuronal dynamics are highly non-linear, and
hand-tuned models require extensive coarse-graining for
tractability (Mejias et al., 2018)
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Machine Learning and Statistics: Potential of recent ML methods

« Factors motivating the use of recent machine-learning methods in
numerous areas:

- Interpretability methods are being developed to probe models for
many problems of interest

- Examples

*In genomics: Deep-LIFT for variant prioritization (Shrikumar et
al., 2017)

« In neuroscience: Gradient-based methods for identifying causally
relevant voxels in fMRI (Dezfouli et al., 2018)

« In psychiatric genomics: Pathway/module-based annotation of
hidden nodes in polygenic models (Wang et al., 2018)
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Machine Learning and Statistics: Potential of recent ML methods

« Factors motivating the use of recent machine-learning methods in
numerous areas:

- Theoretical analysis of deep-learning has progressed substantially,
clarifying its statistical properties (Arora, 2018)

|

- Examples

« Compressibility analysis: Networks learned on _|
real data are highly stable and compressible

« Information Bottleneck principle:
DL automatically identifies relevant features

Flat vs sharp minima

[

Figure from Arora, 2018
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Recent Machine Learning Approaches and Neuroscience:
Bayesian and Causal Networks

« Comparison of methods

Method Flexible function | Global Compact Interpretability
forms optimization models

Linear/logistic X X X

regression

Bayesian/causal | (X) X X X

networks

Random Forests | X X

SVMs X X

Deep Neural X X (X)

Networks
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Recent Machine Learning Approaches and Neuroscience:
Bayesian and Causal Networks

* Bayesian and Causal Networks
- Any probability distribution can be factored: p(x,y,z) = p()p(y|x)p(z|x, y)
- Bayesian networks model independence assumptions via a directed

acyclic graph (DAG): N
p(x,y,2z) =pxX)py|x)p(z|x) y CDLZC%AO . [e.g. gene expression levels]

- Causal networks carry additional semantics

p(x,y,z) = pOpy[)p(z|y) Pdo (y=y,) (X, ¥, 2) = p(x)6(y = ¥o)p (z]yo)

» Applications in Genomics:
- Genome annotation (ChromHMM, Ernst and Kellis, 2010)
- Causal modeling of protein signaling networks (Sachs et al., 2005)
- QTL modeling with hidden factors (PEER, Stegle et al., 2012)
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Recent Machine Learning Approaches and Neuroscience:
Random Forests and Support Vector Machines (SVMs)

« Random Forests and SVMs are flexible ML classification and
regression models

* Both are universal approximators (can model any function)

*« Random Forests:
- Recursively split training data based on an error function such as the

Gini-index or entropy
X Stll
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« Applications in Genomics/Neuroscience:
o RFs: Brain cell-type discovery and prediction (Lake et al., 2014;

Tasic et al., 2018)
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Recent Machine Learning Approaches and Neuroscience:
Random Forests and Support Vector Machines (SVMs)

« Support Vector Machines:
- Learn a linear classifier in a high-dimensional feature space
- Kernel can be chosen based on problem; highly flexible
- Global optimum can be found (convex), but model may be non-compact

SVM, with RBF kernel:
Input space:
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Feature space:

« Applications in Genomics/Neuroscience:
- SVMs: Binding site motif discovery (gkmSVM, Ghandi et al., 2014)
- SVMs: Neuronal population code analysis (Schuck and Niv, 2018)

C. Bishop, 2006
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Recent Machine Learning Approaches and Neuroscience:
Deep-Learning

« Deep-Learning provides an alternative approach to supervised and
unsupervised learning

« Uses highly non-linear models which can be efficiently optimized using
back-propagation and stochastic gradient descent

- NB optimization is non-global
« Hidden nodes discover features from training data (require interpreting)
* Function form: y = W, a(W,_; (... WyX))

Input Hidden Output
layer layer layer
(Vo) (V1) (V2)

» Applications in Genomics/Neuroscience:

o In silico prediction of variant effectson TF
binding motifs (DeepSEA, Zhou et al., 2015) *

- Epigenome annotation (Avacado, Schreiber I O 054 """‘~~~~~iiiiii::;@% -
et al., 2018) o @y oo
- Non-linear PRSs (Tran et al., 2018) o _‘ /
- Joint language/fMRI model (Jain et al., 2018) @)
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Integrative Analysis — PsychENCODE case study: Multilevel modeling

« For any trait, the effects of genetic variation arise through perturbations
of processes at cellular and sub-cellular levels, which can be probed
through genomics data.
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Integrative Analysis — PsychENCODE case study: Multilevel modeling

« For psychiatric and brain-related traits, additional layers of complexity

are relevant.

Neurobiological hierarchies
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Integrative Analysis — PsychENCODE case study: Multilevel modeling

« For PsychENCODE integrative analysis (Wang et al., 2018), we
introduced a deep-learning based predictive model for psychiatric
conditions (Schizophrenia, Bipolar, Autism)

o Learn to predict genomics variables from genetic variation

- Model unobserved intermediate layers as latent factors

- Predict psychiatric disorders from genetics by imputing genomics and
latent factors

* Motivating assumptions:
- Additive polygenic risk scores achieve low predictive power because of
failure to model epistasis
o Epistatic interactions can be captured through deep-learning by using
genomics to embed known structure into the model

» Data:
o 1039 control, 558 SCZ, 217 BPD and 44 ASD subjects

o Post-mortem Prefrontal Cortex samples from all subjects
- WGS genotype data from all subjects

- RNA-seq data, all subjects
o ChIP-seq (h3k27ac), and Hi-C data from a subset of subjects

- Also integrate data from GTEX, Epigenetics Roadmap & CommonMind
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Integrative Analysis — PsychENCODE case study:
Larger eQTL sets than previous brain studies

GWAS enrichment
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* Also, calculate ~8K chromatin QTLs (cQTLs), 1.6K cell fraction QTLs
(fQTLS) and others
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Integrative Analysis — PsychENCODE case study:
Gene regulatory network inference
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e.g., subnetworks targeting single cell marker genes
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Integrative Analysis — PsychENCODE case study:
Weighted Gene Co-expression Network Analysis (WGCNA)

* WGCNA algorithm for finding network modules (Zhang et al., '05):

1.
2.

3.
4,

Start with a weighted network (correlation in expression values)
Compute the "Topological overlap’ between all pairs of genes
(proportional to # neighbors shared)

Build dendrogram using mean distance agglomerative clustering
Cut tree to produce final modules (Dynamic Tree Cut)

* We apply WGCNA to find 5024 modules
« Other PEC analyses find modules which change over development (Li et

al., 2018),

>

WGCNA modules

and with cross-disorder associations (Gandal et al., 2018)
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Integrative Analysis — PsychENCODE case study:
Conditional Boltzmann machine models
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cRBM: V. Mnih, H. Larochelle, G.E. Hinton, Conditional Restricted Boltzmann Machines for Structured Output Prediction. UA/,2012.
DBM: R. Salakhutdinov, G.Hinton, Deep Boltzmann Machines. AISTATS, 2009.
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Integrative Analysis — PsychENCODE case study:
Deep Structured Phenotype Network (DSPN)
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Integrative Analysis — PsychENCODE case study:
DSPN improves disorder prediction over baseline PRS

LR cRBM DSPN
L3
(output)
L:2b
L2
(hidden)
L2a
Lic/d
L1
(visible or
imputed) L1a/b
LO
(conditioning)
Method LR-genotype | LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 63.0% 70.0% 59.0%
Bipolar Disorder 63.3% 71.1% 67.2%
ASD 51.7% 67.2% 62.5%
=—

Accuracy = chance to correctly predict disease/health
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Integrative Analysis — PsychENCODE case study:
Latent factors help prediction in DSPN

LR cRBM DSPN
L3
(output)
L2
L2
(hidden)
L2a
Lic/d
L1
(visible or
imputed) L1a/b
LO
(conditioning)
Method LR-genotype | LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
ASD 50.0% 51.7% 67.2% 62.5% 68.3%
t - j
X2.5

Accuracy = chance to correctly predict disease/health
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Integrative Analysis — PsychENCODE case study:
Incorporating prior structure helps prediction

LR cRBM DSPN
L3
(output)
L2
(hidden)
Lic/d
L1
(visible or
imputed) L1a/b
LO
(conditioning)
Method LR-genotype | LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 54.6% 63.0% 70.0% 59.0% 73.6%
Bipolar Disorder 56.7% 63.3% 71.1% 67.2% 76.7%
ASD 50.0% 51.7% 67.2% 62.5% 68.3%

X3.1

Accuracy = chance to correctly predict disease/health
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Integrative Analysis — PsychENCODE case study:
Converting predictive performance to liability scale

LR cRBM DSPN
L3
(output)
L:2b
L2
(hidden)
L2a
Lic/d
L1
(visible or
imputed) L1a/b
LO
(conditioning)
Method LR-genotype | LR-transcriptome cRBM DSPN- DSPN-full
imputation
Schizophrenia 0.5% 4.8% 31.0% 1.8% 32.8%
Bipolar Disorder 2.5% 6.3% 22.6% 10.7% 37.4%
ASD 0.0% 1.8% 10.8% 3.2% 11.3%
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Integrative Analysis — PsychENCODE case study:
Multilevel network interpretation

/ Rank projection tree \ .DSPN modules (MODs)and
higher-order groupings (HOGs)

L3

Lo

Weight ranks:
++

Best positive paths
¢o: T — N L2a ( (from a and b):
o([]) =no1 a_a— a,— SCZ

N A

J. Warrell, H. Mohsen, and M. Gerstein. Rank projectiontrees for Multilevel Neural Network Interpretation. NeurlPS ML4H workshop, 2018

26 WCPG, Education Day, Machine Learning tutorial. September 26", 2019 Yale SCHOOL OF MEDICINE



Integrative Analysis — PsychENCODE case study:
Cross-disorder ranking of functional terms

SCzZ BPD ASD

KEGG/GO terms

Spliceosome / RNA splicing
Synaptic vesicle cycle

Antigen proc. and presentation
Vesicle localization
Proteasome

mRNA processing

Chromatin modification
Oxidative phosphorylation
Retrograde endocannabinoid sig.
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mRNA transport
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Hippo signaling pathway

Staph./ Epstein-Barr virus inf.
Synaptic signaling
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Dop./GABA/Glutamatergic synapse
Calcium signaling

Endocrine calcium reabsorption
RNA degradation / transport
Ribosome

Neuron projection morphogenesis
Fc receptor signaling pathway
cGMP-PKG signaling pathway
mTOR signaling pathway
Cytokine-cytokine receptor int.

Ranking score
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Integrative Analysis — PsychENCODE case study:
Linkage of eQTLs, cQTLs and enhancers to prioritized modules (SCZ2)
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Summary

» Current methods in machine learning lie on a spectrum with
traditional statistics

* Recent methods such as Deep-Learning are highly flexible, and give
high performance across multiple tasks

« However, require novel methods for model interpretation: many
available and are being developed

* Many successes in genomics and neuroscience: tantalizing results
may point to beginnings of a shared understanding of the brain and
principles underlying Al
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Thanks for your attention!
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